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The systematic variation of task 
characteristics facilitates the understanding 
of task difficulty: A cognitive diagnostic 
modeling approach to complex problem 
solving 
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Abstract 

Since the 1960ies, when pioneering research on Item Response Theory (IRT) was published, con-
siderable progress has been made with regard to the psychometrical quality of psychological as-
sessment tools. One recent development building upon IRT is the introduction of Cognitive Diag-
nostic Modeling (CDM). The major goal of introducing CDM was to develop methods that allow 
for examining which cognitive processes are involved when a person is working on a specific 
assessment task. More precisely, CDM enables researchers to investigate whether assumed task 
characteristics drive item difficulty and, thus, person ability parameters. This may – at least accord-
ing to the assumption inherent in CDM - allow conclusions about cognitive processes involved in 
assessment tasks. In this study, out of the numerous CDMs available the Least Square Distance 
Method (LSDM; Dimitrov, 2012) was applied to investigate psychometrical qualities of an assess-
ment instrument measuring Complex Problem Solving (CPS) skills. For the purpose of the study, 
two task characteristics essential for mastering CPS tasks were identified ex-ante – degree of con-
nectivity and presence of indirect effects by adding eigendynamics to the task. The study examined 
whether and how the two hypothesized task characteristics drive item difficulty of two CPS dimen-
sions, knowledge acquisition and knowledge application. The sample consisted of 490 German 
high school students, who completed the computer-based CPS assessment instrument MicroDYN. 
The two task characteristics in MicroDYN items were varied systematically. Results obtained in  
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LSDM indicated that the two hypothesized task characteristics, degree of connectivity and intro-
ducing indirect effects, drove item difficulty only for knowledge acquisition. Hence, other task 
characteristics that may determine item difficulty of knowledge application need to be investigated 
in future studies in order to provide a sound measurement of CPS. 
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Educational systems and the labour market are not static phenomena – they change and 
evolve over time. In line with this fact, the last decades have been marked by a notable 
shift from routine tasks (i.e., tasks requiring recurring, monotonous actions) to non-
routine tasks (i.e., tasks requiring complex, dynamic actions) in various areas of every-
day life. As a result, complex, so-called transversal skills are necessary to successfully 
master non-routine tasks and, thus, exponentially gain in importance (Autor, Levy, & 
Murnane, 2003). Moreover, the acquisition of such complex skills is becoming an essen-
tial part of many educational curricula (Mayer & Wittrock, 2006). Consequently, as-
sessments of transversal skills – Creativity, Complex Problem Solving, Computer Litera-
cy, and Collaboration (i.e. 21st century skills; Binkley et al., 2012) – are included in a 
number of educational large-scale assessments. For instance, a computer-based assess-
ment of Complex Problem Solving (CPS) was employed in the arguably most compre-
hensive international large-scale assessment, the Programme for International Student 
Assessment (PISA), in its 2012 survey (OECD, 2013). 

However, in order to provide a sound measurement of any construct an extensive analy-
sis of the assessment tool and its psychometric characteristics is warranted. To this end, 
recent developments within the scope of Item Response Theory (IRT) offer new ways of 
examining psychometric qualities of assessment tools. In this study, we use an advanced 
statistical method following IRT to profound our understanding of CPS and to assure the 
validity of an instrument used to assess CPS. More specifically, with the help of Cogni-
tive Diagnostic Models4(CDM; Rupp & Templin, 2008) we examine if and how different 
task characteristics drive CPS item difficulties. This may further help us understand, 
which underlying cognitive processes are involved in solving CPS assessment tasks and 
which processes are mastered at different ability levels. 

Complex Problems Solving 

Complex problems are characterized by their interactivity and dynamics (Wirth & 
Klieme, 2003). They require the problem solver to actively investigate the problem in 
order to acquire the information necessary to solve it (the interactive aspect). Further, the 
                                                                                                                         
4
 Please note that different authors use also following terms to refer to CDM: cognitive psychometric 

models, multiple classification models, latent response models, restricted latent class models, structured 
located latent class models, or structured IRT models (as reviewed by Rupp and Templin, 2008). 
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problem changes as a result of user interaction and/or time (the dynamic aspect) (cf. 
Buchner, 1995; Funke, 2001). An often-described CPS task is handling an MP3 player 
for the first time ever. A person who has no previous knowledge of an MP3 player needs 
to first explore the object, try out different commands. In doing so, a person acquires 
knowledge on how the system functions. After acquiring knowledge, a person has to 
apply this knowledge in order to reach specific goals, for example, making a playlist that 
contains only a limited number of songs (Funke, 2001; Greiff, 2012a). Hence, in theory 
CPS is composed of two dimensions – knowledge acquisition and knowledge application 
(cf. Mayer & Wittrock, 2006; Novick & Bassok, 2005). Furthermore, these two dimen-
sions of CPS have been proven as separable in several empirical studies (e.g., Wüsten-
berg, Greiff, & Funke, 2012; Greiff et al., 2013). 

Assessment of complex problem solving 

Researchers early recognized the importance of CPS skills and their assessment has been 
an appealing research topic in the past decades. However, up to now there is little relia-
ble information available about cognitive processes that take place when solving a com-
plex problem. However, new assessment approaches combined with innovative statistical 
methods, such as CDM may allow us to investigate this research question. More specifi-
cally, earlier CPS assessment approaches had many constraints, and only recently new 
assessment instruments allow a reliable and valid assessment. First measurement at-
tempts were based on laboratory computer simulations trying to imitate real life problem 
situations such as managing of a tailorshop, or of an entire city (Dörner, 1980, 1986). 
Such simulations enabled researchers to investigate the limits of human capability in 
managing complexity (cf. Dörner, 1980). However, aforementioned experimental opera-
tionalizations had severe limitations, not allowing their application for the assessment of 
individual skills outside of laboratory setting. Some of these limitations were the unac-
ceptably long testing time, content of the tasks that substantially relied on previous 
knowledge, inadequate scoring of tasks, or an unsatisfying internal validity of instru-
ments (cf. Greiff, 2012b). The introduction of formal frameworks (Funke, 2001) was a 
first reaction to measurement issues associated with early CPS tasks. Their implementa-
tion as an assessment approach for measuring CPS was an important step forward in 
developing a sound measurement tool. Formal frameworks aim at systematically con-
structing CPS tasks and at describing their underlying structure independent of semantic 
embedment. That is, problem solvers are confronted with a task composed of precisely 
defined components. Subsequently, this task is layered with an arbitrarily chosen seman-
tic cover. 

One particular framework, Linear Structural Equation (LSE) systems, has been widely 
perceived by CPS research and led to the development of a considerable amount of tasks, 
such as Multiflux (Kröner, Plass, & Leutner, 2005), Genetics Lab (Sonnleitner et al., 
2012), or ColorSim (Kluge, 2008). In LSE systems such as the one depicted in Figure 1, 
input variables (in Figure 1: 1X , 2X , 3X ) have an impact on output variables (in Figure 
1: 1Y , 2Y , 3Y ). Generally, a person can only manipulate the input variables (cf. Funke, 
2001; Greiff & Funke, 2010). Further, output variables may be related to each other, 
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which is labeled as a side effect (in Figure 1: 2Y  to 3Y ). Another possibility is that an 
output variable is related to itself and changes independently from other influences, 
which is labeled as an eigendynamic (in Figure 1: 1Y ). Direct connections from input to 
output variables are labeled as direct effects (i.e., relations from nX  to nY ), whereas 
connections between output variables (i.e., side effects, eigendynamics) are labeled as 
indirect effects (cf. Greiff, Wüstenberg, & Funke, 2012). 

The number of equations necessary to describe an entire LSE system is equal to the 
number of output variables, which are denoted by Y. For the LSE system example pro-
vided by Greiff et al. (2012; cf. Figure 1), the following equations are required: 

 

 Y1(t+1) = a1 * X1(t) + a2 * Y1(t) (1) 

 Y2(t+1) = a3 * X2(t) + Y2(t) (2) 

 Y3(t+1) = a4 * X2(t) + a5 * X3 (t) + a6 * Y2(t) + Y3(t) (3) 

 

with t = discrete time steps, ia  = arbitrary path coefficients, ia  ≠ 0, and .. ≠ 1. 

The advantage of LSE systems is that due to their dependency on linear equations they 
allow for variation of task characteristics, which gives researchers the means to systemat-
ically adjust a wide range of task difficulties in an assessment of CPS. Hence, with the 
help of CDM, we can analyze which ability level is necessary to master a specific task 
characteristic. This, in turn, may enable us to investigate the nature of cognitive process-
es involved in the CPS assessment and in the construct itself. 

 

 
Figure 1: 

Example of the structure of a typical LSE system displaying three input (X1, X2, X3) and three 
output (Y1, Y2, Y3) variables (Greiff et al., 2012). 
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Between- vs. within-component perspective 

When investigating CPS or other cognitive constructs, there are two different perspec-
tives for research. The common one is the between-component perspective. Here, the 
main goal is to investigate which components are relevant for CPS. However, the under-
standing of CPS should not stop at knowing which components are relevant (between-
component perspective), but also which task characteristics of these components drive 
item difficulty and person ability estimates (within-component perspective). Therefore, it 
is not only important to differentiate between knowledge acquisition and knowledge 
application as two separate CPS dimensions, but also to identify which task characteris-
tics determine the task difficulty within these two dimensions.  

When constructing and validating an assessment instrument for CPS, it is therefore es-
sential to address the question of the nature of processes problem solvers engage into 
when performing on specific components of a CPS task (Rupp & Templin, 2008). That 
is, in order to grasp the degree to which a problem solver can master a certain CPS com-
ponent, a profound understanding of the cognitive processes contributing to this perfor-
mance is mandatory (Wilhelm & Robitzsch, 2009). That is, research on CPS task charac-
teristics can bring us one step nearer to discovering the nature of cognitive processes 
involved in the tasks.  

For instance, within knowledge application – one of the two overarching problem solv-
ing processes besides knowledge acquisition – different tasks place different cognitive 
demands on a problem solver. Whereas some CPS tasks may be static and do not change 
without respondents’ intervention, some may change dynamically over time. This rate of 
change over the course of time could be slow for some tasks (e.g., population growth), or 
rapid and abrupt for others (e.g., spread of diseases). The extent, to which respondents 
master different dynamics across tasks, indicates their ability level and gives an insight 
into the nature of cognitive processes involved in knowledge application.  

In order to illustrate how the aforementioned within-component perspective enhances the 
understanding of underlying cognitive processes, we consider a classical example from 
mathematical problem solving. In his linear logistic test model (LLTM), Fischer (1973) 
explains difficulty of mathematic items through a set of eight basic task characteristics 
such as differentiating a polynomial or using the quotient rule. By reducing a large num-
ber of item difficulty estimates to considerably fewer attribute parameters a substantive 
understanding of which processes respondents apply to master items is obtained. In fact, 
many studies attempt to predict item difficulty by identifying task characteristics thereby 
gathering insights into the underlying cognitive processes (e.g., Buck & Tatsuoka, 1998; 
Green, 1984; Poinstingl, 2009). For instance, in order to determine item generating rules 
for the verbal reasoning test “Family Relation Reasoning Test” (FRRT), Poinstingl 
(2009) examines if specific task characteristics that were theoretically identified before-
hand are able to explain item difficulty parameters obtained within a Rasch model. Using 
Fischer`s (1973) LLTM matrix of weights, Poinstingl shows that assumed relevant task 
characteristics are not entirely reflected in the empirically obtained data, and that, thus, 
the construct validity of the FRRT must be further investigated. As a result, Poinstingl 
(2009) concludes that other task characteristics must be taken into account in order to 
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generate further items for a revised version of the FRRT. Generally speaking, discover-
ing which task characteristics are determining the item difficulty allows researchers 
generating adequate items for all ability levels, thereby improving the psychometrical 
qualities of an assessment instrument.  

Methods used in the enterprise of attributing item difficulty estimates to a smaller num-
ber of parameters, such as the LLTM matrix of weights used by Fischer (1973) and Poin-
stingl (2009), embrace a variety of different models ranging from classical multiple 
regressions to modern CDM. Particularly the latter methods can guide theory-based task 
construction and enhance a substantive understanding of CPS and the cognitive process-
es problem solvers engage into while solving a problem task. Hartig (2007) points out 
that hypotheses on task characteristics and accompanying cognitive processes, which 
essentially inform test development, are ideally addressed ex-ante by substantive and 
experimental research in the respective field. However, the systematic procedure of ex-
ante manipulation of task characteristics, as the one in Poinstingl`s study, is hardly ever 
found. Even Fischer (1973) derived characteristics of his mathematical tasks in a post-
hoc analysis. Importantly, LSE embedded assessments, with their systematic and linear 
structure make the ex-ante manipulation of task characteristics realistic and manageable. 
In the present study, we focus on the construct of CPS and aim at estimating item diffi-
culty parameters of CPS tasks using a relatively new and valid assessment instrument, 
the MicroDYN approach, which is embedded in the LSE framework. In doing so, we 
apply ex-ante systematical variation of task characteristics, which are in theory assumed 
to be essential for the difficulty of CPS items.  

Task characteristics and task difficulty in CPS 

The LSE framework (cf. Figure 1), allows to vary discrete task characteristics and to 
observe their impact on performance. This may serve as a method to detect which task 
attributes impact item difficulty, and may further indicate, arguably, which cognitive 
processes are at work when solving an item.  

So far, experimental research on CPS has provided empirical information on three task 
characteristics in LSE, thus allowing for ex-ante assumptions about item difficulty. First, 
the number of constituting elements (i.e., the number of variables the problem solver 
needs to take into account) can be varied. For example, the LSE system in Figure 1 con-
sists of three input and three output variables that need to be considered. Second, degree 
of connectivity includes all relations between variables that a problem solver needs to 
consider. In Figure 1, connections can be recognized by arrows connecting output and 
input variables (i.e., direct effects; Funke 2001), arrows connecting two output variables 
(i.e., side effect; Funke 2001), or curved arrows that point from and back to the same 
output variable (i.e., eigendynamic; Funke 2001). Finally, the third task characteristic is 
the presence of indirect effects (i.e., side-effects, eigendynamics; Funke 2001) within an 
LSE system. The defining characteristic of an indirect effect is that it cannot be changed 
directly by influencing one input variable. The eigendynamic in the example in Figure 1 
is presented by the arrow pointing from and back to the output variable 1Y .  Also in Fig-
ure 1, a side-effect is presented by the arrow connecting 2Y  and 3Y .  All in all, the ex-
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ample in Figure 1 has a degree of connectivity equal to 6 (four direct connections, one 
eigendynamic, and one side-effect). Because there is an eigendynamic present, it can be 
scored as 1 with regard to the presence of indirect effects (1 for the presence of eigendy-
namics or 0 for no eigendynamics in the task). Side-effects can be scored in the same 
way as the presence of eigendynamics, with 1 for the presence of a side-effect (or ef-
fects) and 0 for no side-effects. 

In her study on CPS assessment, Kluge (2008) uses the task ColorSim embedded into the 
LSE framework, which allows task characteristics variation (cf. Table 1). She introduces 
three task difficulty levels for ColorSim tasks, depending on the two task characteristics 
– degree of connectivity and presence of indirect effects. Kluge (2008) reports that sim-
ultaneously increasing the degree of connectivity as well as introducing indirect effects 
in LSE considerably reduces the knowledge acquired and the achieved level of 
knowledge application. Hence, varying different task characteristics reflects directly on 
the task difficulty (cf. Table 1). However, in her study, Kluge (2008) varies different task 
characteristics simultaneously and unsystematically, making it impossible to draw relia-
ble conclusions regarding the question, which task characteristics determine item diffi-
culties. Specifically, from the linear equations provided in Table 1 follows that both task 
characteristics – degree of connectivity and presence of indirect effects – were varied 
simultaneously in order to achieve medium difficulty. The same was done to construct a 
difficult version of the ColorSIM task. Thus, it can be concluded that if combined, the 
two hypothesized task characteristics influence the difficulty of items. However, no 
statement can be made about how each task characteristic separately influences the item 
difficulty.  

 

Table 1: 
Linear equations of the three task versions with different difficulties of ColorSim, with 

eigendynamics (in bold) and side effects (in italics) (Kluge, 2008). 

Task difficulty: Easy 

t 1 tGreen 10*x+ =  

t 1 t tBlack 3*z 1.0*black+ = +  

t 1 t tYellow 2*y 0.5*z+ = +  

Task difficulty: Medium 

t 1 tGreen 10*x 1.1*+ = + tgreen  

t 1 t tBlack 3*z 1.0*black 0.2* tyellow+ = + +  

t 1 t tYellow 2*y 0.5*z+ = +  

Task difficulty: Difficult 

t 1 tGreen 10*x 1.1* 0.5* tyellow+ = + +tgreen  

t 1 t tBlack 3*z 1.0*black 0.2* tyellow+ = + +  

t 1 t tYellow 2*y 0.5*z 0.9*+ = + + tyellow  
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Funke (1992) shows that performance on both dimensions – knowledge acquisition and 
knowledge application – drastically decreases when indirect effects are introduced. The 
difficulty problem solvers encounter when dealing with indirect effects is experimentally 
bolstered by Greiff (2012a), who shows how tasks become gradually more difficult when 
the number of indirect effects is increased. Additionally, the degree of connectivity is a 
major constituent of difficulty, whereas the number of constituting elements taken by 
itself is not (Greiff, 2012a). 

In summary, experimental studies have produced substantial effects on task difficulty for 
the degree of connectivity and for indirect effects alluding to the increased cognitive 
demands associated with these task characteristics. More specifically, it is assumed that 
in line with Sweller (2003) by rising connectivity and by adding indirect effects intrinsic 
and germane cognitive load substantially increase leading to a larger percentage of er-
rors. In fact, Sweller (2005) considers complexity of underlying task structure a major 
cause of cognitive load. In contrast, the number of constituting elements seems to be of 
little importance in LSE-based CPS tasks. 

Research questions 

The importance of determining task characteristics in order to understand a construct is 
widely accepted and has been a research question in several experimental studies (e.g., 
Fischer, 1973; Kluge, 2008; Poinstingl, 2009). However, up until now, there is no record of 
a study examining effects of task characteristics on CPS item difficulties by using CDM. 
Therefore, the main research goal of this study is to enhance our knowledge about how task 
characteristics drive item difficulty parameters of knowledge acquisition and knowledge 
application in CPS. To yield sufficient variation in difficulty, only the two task characteris-
tics that have been experimentally shown to impact task difficulty before – degree of con-
nectivity and presence of indirect effects (eigendynamics) – are of interest in our study.  

Furthermore, in their empirical studies, Greiff et al. (2012) and Wüstenberg et al. (2012) 
report generally lower reliability and predictability of knowledge application. Therefore, 
it is assumed that effects of cognitive characteristics within LSE tasks on performance 
measures are similar in their nature for both CPS dimensions with effect sizes somewhat 
smaller for knowledge application. Overall, we derive three hypotheses. 

Hypothesis 1: 

Hypothesis 1.1: Increasing the degree of connectivity in a CPS task significantly aug-
ments difficulty of knowledge acquisition items. 

Hypothesis 1.2: Introducing indirect effects (eigendynamics) to a CPS task significantly 
augments difficulty of knowledge acquisition items. 

Hypothesis 2: 

Hypothesis 2.1: Increasing the degree of connectivity in a CPS task significantly aug-
ments difficulty of knowledge application items. 
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Hypothesis 2.2: Introducing indirect effects (eigendynamics) to a CPS task significantly 
augments difficulty of knowledge application items. 

Hypothesis 3: 

Larger effect sizes are expected for varying task characteristics for knowledge acquisi-
tion items than for knowledge application items. 

Material and methods 

This study aims at elaborating the construct of CPS and its defining dimensions by dis-
covering how different task characteristics drive item difficulty parameters in a Micro-
DYN assessment of CPS. Two task characteristics – degree of connectivity and presence 
of indirect effects – were systematically varied ex-ante. Subsequently, the MicroDYN 
assessment tool was administered to a sample of German students within secondary 
education. Finally, CDM was applied on the empirically obtained data in order to inves-
tigate whether the hypothesized task characteristics have an impact on item difficulty of 
two CPS dimensions – knowledge acquisition and knowledge application. 

Participants 

The sample was composed of N=490 students5 (248 female; MAge=15.8; SDAge=2.0). 
Participants were tested at computer facilities of a school located in the South of Germa-
ny. If all students within a class worked conscientious, which was indicated by a low 
percentage of missing data and reasonable time-on-task, the entire class was rewarded a 
financial support of approximately 150$ paid to the class inventory. Furthermore, stu-
dents could choose to receive personal feedback on their results. Infrequent cases of 
missing data due to software problems (e.g., log files were not saved properly) were 
missing completely at random. 

Material 

The MicroDYN approach as the measurement framework for CPS, which was adminis-
tered in this study, represents an innovative approach embedded into LSE systems. The 
completely computer-based MicroDYN test involves an entire set of independent CPS 
tasks each lasting approximately 5 minutes. This short time-on-task, which is referred to 
as multiple complexity in the literature (e.g., Greiff et al., 2012), yields several meas-
urement advantages in comparison to other existing CPS assessments and has proved to 
be useful in defining the underlying construct on a conceptual and an empirical level 

                                                                                                                         
5
 Data obtained from this sample are already used in other publications, mostly to determine psychomet-

rical qualities of the CPS tasks and to cover the between-component perspective. Analyses on task char-
acteristics using CDM as presented in this study are entirely original. 
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(e.g., Greiff, Wüstenberg, Holt, Goldhammer, & Funke, 2013; Schweizer, Wüstenberg, 
& Greiff, 2013; Wüstenberg et al., 2012). A comprehensive description of the Micro-
DYN approach is found in Greiff et al. (2012) and Wüstenberg et al. (2012). 

The structure of a MicroDYN task corresponds to the LSE system structure described 
above (cf. Figure 1). Since MicroDYN is embedded into an LSE framework, it allows 
the variation of connections between inputs and outputs (i.e. varying number of consti-
tuting elements, degree of connectivity, or presence of indirect effects). With regard to 
semantic embedment, each task has a different cover story (e.g. planting pumpkins, 
feeding a cat, or driving a moped). To minimize uncontrolled influences of prior 
knowledge, which is one of the advantages of the MicroDYN approach, inputs and out-
puts are either labeled without deep semantic meaning (e.g., button A) or fictitiously 
(e.g., Solurax as name for a fertilizer) as depicted in Figure 2. 

The procedure for each MicroDYN task is the same generally applied in LSE systems, in 
which respondents perform on the two overarching CPS dimensions. In phase 1, 
knowledge acquisition, respondents first explore the task by manipulating inputs and  
 
 

 
Figure 2: 

Screenshot of the MicroDYN task “Planting Pumpkins” during the knowledge application 
phase. The participant has to reach the target area indicated numerically and by red areas on 
the right side of the screen by using knowledge acquired in the first phase and manipulating 

controller on the left side of the screen. 
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then represent their knowledge in a causal diagram (Funke, 2001). In phase 2, knowledge 
application, respondents have to achieve pre-defined target values in the outputs by using 
the knowledge acquired in the first phase of the task (Funke, 2001; Figure 2). Thereby, in 
the knowledge application phase, the correct model is depicted as shown in Figure 2, so 
that the achievement in the second phase does not depend on the correctness of the mod-
el drown in the first phase. A MicroDYN test starts with a detailed instruction including 
trial tasks, in which respondents learn how to operate the software interface, and contin-
ues with several independent problems, each of which is administered exactly in the way 
described above. In the specific MicroDYN test version used, seven MicroDYN tasks 
were administered lasting approximately 45 minutes.  

In order to test the hypotheses postulated above, the degree of connectivity and the pres-
ence of indirect effects were varied systematically, whereby tasks included two, three or 
four connections. For each possible degree of connectivity, except for the very first task 
with only two effects, there was a task including only direct effects and a task including 
additional eigendynamics as indirect effects. This way, there were four tasks with no 
indirect effects and only varying number of direct effects. Three other tasks included 
indirect effects and varied number of direct effects. Detailed variation of task characteris-
tics for each task can be found in the Appendix. 

Procedure and scoring 

Test execution was fully computer-based and lasted approximately 45 minutes Partici-
pants worked on a set of seven MicroDYN tasks with systematically ex-ante varied task 
characteristics as described above. In the end, students additionally provided demograph-
ical data. 

Scoring of each of the seven MicroDYN tasks was categorical, which is an appropriate 
way to capture CPS performance (Kröner et al., 2005). With regard to knowledge acqui-
sition, full credit was given if models that students provided at the end of the exploration 
contained no mistakes (i.e., “1”), otherwise no credit was assigned (i.e., “0”). A full 
score in knowledge application was given if all target values were reached (i.e., “2”), 
whereas partial credit reflected a tendency to approach but not to fully reach target val-
ues (i.e., “1”). If target values were neither reached nor approached, no credit was given 
(i.e., “0”). For details on scoring consult Greiff et al. (2012) or Wüstenberg et al. (2012). 

Statistical analysis and calculation 

Besides general descriptive statistics that were calculated for the available data, Rasch 
models and CDM were applied. For testing the postulated hypotheses, it is a prerequisite 
that the selected IRT model holds in order to be able to use CDM. This is because in 
CDM, task difficulty expressed through IRT difficulty estimates is predicted by task 
characteristics. Thus, before testing CDM, we check for coherence between the Rasch 
model assumptions and our data. Note that the CDM method used can be applied to the 
difficulty estimates estimated under any other standard IRT model. We have opted for 
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the Rasch model because of its favorable statistical properties and because MicroDYN is 
known to be conform with the Rasch model (Wüstenberg et al., 2012). 

Of the numerous available CDM, either the LLTM introduced above (Fischer, 1973) or 
the Least Square Distance Method (LSDM; Dimitrov, 2007) is the natural choice for the 
present study. Both predict Rasch item difficulties by means of a matrix, in which task 
characteristics are specified. However, they differ in the assumed link function between 
task characteristics and difficulty. LLTM postulates an additive link, and LSDM assumes 
a multiplicative link excluding the possibility of compensation. In a CPS task it is an 
appropriate assumption that all elements of a problem need to be understood to fully 
penetrate the problem and that a high understanding of one characteristic cannot com-
pensate a low understanding in another. Thus, for the present analysis the LSDM as a 
conjunctive multiplicative model was chosen (cf. Equation 4). 

 

 ( )
1

1
K

qjk
ij k i

k

P P A θ
=

 = = ∏   (4) 

 

Equation 4 represents the probability of correct item response in LSDM – ijP is the prob-
ability of correct response on item j for a person at ability level iθ , ( )1k iPA θ= is the 
probability of correct performance on attribute kA  for a person at the ability level iθ , 
and qjk  is a 0/1 element in the Q-matrix, allowing all values between 0 and 1 that links 
item j to attribute kA  (Dimitrov, 2007). 

Thus, the LSDM was used to evaluate the impact of specific characteristics of Micro-
DYN tasks on item difficulty. To this end, the underlying LSE structure (Funke, 2001) of 
the tasks was varied ex-ante with regard to two characteristics, degree of connectivity (2, 
3, or 4 connections) and presence of eigendynamics as indirect effects (not present or 
present) with all other elements of the underlying structure remaining equal (for specific 
equations for all tasks see Appendix). Subsequently, the LSDM was used to investigate 
whether these characteristics affected item difficulty. IRT- as well as all subsequent 
analyses were conducted separately for knowledge acquisition and knowledge applica-
tion. 

The statistical analysis6 was conducted with the generalized item response modeling 
software ConQuest (Wu et al., 1997) and with the R software (R Development Core 
Team, 2007) package for statistical computing – “Cognitive Diagnosis Modeling,” 
“Least Squares Distance Method of Cognitive Validation (lsdm)” function. 

 

 

 

                                                                                                                         
6
 Acknowledgments for support in statistical issues go to Alexander Robitzsch. 
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Results 

Descriptives 

Out of the two MicroDYN dimensions – knowledge acquisition and knowledge applica-
tion – the knowledge application was easier on a manifest level (M = .55; SD between 
tasks = .03; SD between persons = .22; α = .68; please note: for this analysis the 0 to 2 
range for the scoring of knowledge application was converted to a 0 to 1 range, so that 
the means between the two dimensions were comparable). Knowledge acquisition 
showed higher difficulty on a manifest level (M = .41; SD between tasks = .08; SD be-
tween persons = .26; α = .81). Both dimensions showed overall satisfactory α level. 
Relative frequencies are presented in Table 2 and they indicate that item difficulties 
differ depending on task characteristics involved in the items. In fact, difficulty in 
knowledge acquisition and knowledge application varied across tasks and – upon first 
inspection – was affected by degree of connectivity and presence of indirect effects in 
items as expected (i.e., eigendynamics; see Hypotheses 1 to 3 for detailed analysis). 

Dimensionality of CPS: Rasch model analysis 

A Rasch model was applied to the dichotomously scored knowledge acquisition dimen-
sion and, separately, a Partial Credit model (Embretson & Reise, 2000) – a direct exten-
sion of the Rasch model when more than two categories are used – was applied to the 
knowledge application dimension, which had three scoring categories. This was per-
formed to check for unidimensionality (i.e., only one latent variable is responsible for 
performance level in manifest indicators) within each of the two dimensions by forcing 
factor loadings to be equal, which is only achieved in the context of the Rasch model and 
its extensions (cf. Kubinger, 2005). Specifically, fit of the Rasch model is a precondition 
for applying CDM used in our hypotheses, and the Rasch difficulty estimates are further 
used in the LSDM as dependent variables (Dimitrov, 2007). Since the LSDM uses diffi-
culty estimates as parameters, also the partial credit scoring is allowed, which is the case 
for the knowledge application dimension (cf. Dimitrov & Atanasov, 2012). 

Rasch and Partial Credit model analyses produced item fit indices that were within the 
endorsed boundaries from .75 to 1.25 (Embretson & Reise, 2000) indicating a good 
compliance of the data with the assumed models. The Rasch mean square fit values and 
the item difficulty parameters are presented in Table 2 and they illustrate a satisfactory 
Rasch model fit for all items. The Rasch correlation between the two dimensions (r = 
.82; p < .001) was high. Overall, it was shown that the Rasch assumption of unidimen-
sionality sufficiently held for the items for knowledge acquisition and knowledge appli-
cation, respectively, a precondition for proceeding with CDM. 
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Hypotheses 1 to 3 

To test Hypotheses 1 through 3, the fit indices for LSDM called Mean Absolute Differ-
ence (MAD) were the main criteria. MAD is a nonstandardized value of the mean abso-
lute difference between an Item Characteristic Curve (ICC) and its recovery through 
LSDM. The ICC recovery through LSDM shows whether the required task characteris-
tics explain the item difficulty across different ability levels, with MAD = 0 indicating a 
perfect ICC recovery (Dimitrov, 2007). In his study, Dimitrov (2007) offers a classifica-
tion of ICC recovery as follows: MAD < .02 as a very good recovery, .02 ≤ MAD < .05 
indicating a good recovery, .05 ≤ MAD < .10 as a sign of a somewhat good recovery,  
.10 ≤ MAD < .15 standing for somewhat poor recovery, .15 ≤ MAD < .20 indicating a 
poor recovery and MAD ≥ .20 indicating a very poor recovery of ICC within LSDM. In 
order to test whether the recoveries of ICCs through LSDM for both dimensions – 
knowledge acquisition and knowledge application – were within acceptable boundaries, 
the mean and median of the MADs across items of each dimension were calculated. 
Moreover, in order to test how well the two task characteristics combined explain the 
overall item difficulty, the coefficient of determination R2 expressing the relation be-
tween task characteristics and the item difficulty on an overall level was provided sepa-
rately for knowledge acquisition and knowledge application. 

For knowledge acquisition, the overall fit indices in LSDM, the mean and median MAD, 
were at .073 and .046, respectively, which is within the commonly applied range of good 
to acceptable fit (Dimitrov, 2007). Further, both task characteristics exhibited substantial 
impact on item difficulty (p < .01 for degree of connectivity; p < .001 for indirect ef-
fects). In combination, these two characteristics explained overall item difficulty excep-
tionally well (coefficient of determination R2 = .94; p < .001) with degree of connectivity 
primarily relevant to differentiate among easy tasks and indirect effects among hard 
tasks. That is, by increasing the degree of connectivity, difficulty was varied between 
easy and medium (latent difficulty parameter -1.78 with a mean of 0; DiBello, Stout, & 
Roussos, 2007), whereas by introducing indirect effects, difficulty was varied between 
medium and hard (latent difficulty parameter 2.50). 

For the other CPS dimension, knowledge application, smaller effects were hypothesized 
(cf. Hypothesis 3). However, the drop in fit values and effect sizes was surprisingly 
substantial. Specifically, mean and median MAD were at .145 and .155, respectively, 
just at the border of poor fit (Dimitrov, 2007). Applying LSDM did not cause any con-
siderable ICC recovery on the overall dimension level. Neither the degree of connectivity 
(cf. Hypothesis 2.1) nor introducing indirect effects (cf. Hypothesis 2.2) were substan-
tially related to item difficulty (p > .10) and the overall determination coefficient R2 was 
low at .26 (p > .05). This indicates that the two hypothesized task characteristics did not 
substantially determine the difficulty of knowledge application in CPS tasks. 

Summarized, for knowledge acquisition strong effects as expected were observed con-
firming the hypotheses that degree of connectivity and indirect effects drive the item 
difficulty of knowledge acquisition (cf. Hypotheses 1.1 and 1.2), whereas no substantial 
effects were found for knowledge application (cf. Hypotheses 2.1 and 2.2). Thus, Hy-
potheses 1.1 and 1.2 were supported, whereas Hypotheses 2.1 and 2.2 could not be con-
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firmed. Degree of connectivity and introducing indirect effects drive item difficulty 
parameters only for one CPS dimension – knowledge acquisition. Hypothesis 3 was also 
supported, showing even stronger differences in effect sizes between knowledge acquisi-
tion and knowledge application than expected. 

Discussion 

The present study was aimed at examining how ex-ante hypothesized task characteristics 
determine item difficulties. This served to enhance our understanding of the underlying 
processes of CPS assessment by using CDM as an advanced statistical method for exam-
ining psychometric qualities of the MicroDYN assessment instrument for CPS. The 
research questions concerned the identification of task characteristics that CPS tasks 
involved and determining how these task characteristics drove item difficulty parameters 
of different CPS dimensions – knowledge acquisition and knowledge application. The 
obtained results provide important information about CPS as construct. They offer guid-
ance on adequate item generation for future research and application endeavors. 

While pursuing the within-component perspective of investigating psychometric quali-
ties of CPS, we systematically manipulated two task characteristics ex-ante, which have 
been proven to be of relevance for mastering CPS tasks in theory and in previous empiri-
cal studies – degree of connectivity and indirect effects – in order to investigate how 
these task characteristics determine item difficulty parameters. CDM revealed that de-
gree of connectivity was generally an easy task characteristic, whereas indirect effects 
constituted a difficult task characteristic, both being important in mastering CPS tasks. 
Thus, when learning to deal with complex problems (that is, learning to reduce intrinsic 
cognitive load imposed by complex tasks; Sweller, 2005), students first acquire cognitive 
skills allowing them to penetrate increasingly connected systems with direct effects only 
and later on students start to understand indirect effects (i.e., dynamic developments). 
Furthermore, according to Bond and Fox (2001) the large difference between latent task 
parameter estimates for degree of connectivity and indirect effects in LSDM suggests 
discontinuity of development in CPS (i.e., qualitative changes) albeit standard errors are 
currently not available for these analyses as statistical backup (Dimitrov, 2007). Overall, 
effects in LSDM were strong and in line with previous experimental findings for 
knowledge acquisition, whilst non-significant for knowledge application suggesting 
other causes for the later CPS dimension. That is, knowledge application performance 
may reflect implicit learning mechanisms and procedural knowledge, in which demon-
stration of knowledge may follow other rules than in knowledge acquisition and may not 
be directly influenced or predicted by task characteristics (e.g., Berry & Broadbent, 
1984). Additional possible explanations7 for the small effects of knowledge application 
can be found in the potential dependencies between the knowledge acquisition and 
knowledge application phases. Specifically, in the knowledge application phase, the test 
taker is provided with the correct model as shown in Figure 2. This model should enable 

                                                                                                                         
7
 Acknowlegements to the anonymous reviewer for his/her contribution to this part of the discussion. 
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the test taker to solve the task even if he/she was not successful in knowledge acquisi-
tion. However, we cannot exclude the possibility that test takers who were successful in 
the first phase versus those who were not may have used different approaches in the 
second phase. This may lead to the conclusion that other task characteristics (e.g., the 
complexity of the strategy the test taker uses) may be important for solving the 
knowledge application part of the task. 

Results of this study, suggesting that the item difficulty of knowledge acquisition and 
knowledge application tasks are driven by different task characteristics of these dimen-
sions, are valuable for future developments in CPS assessment. During the item con-
struction process, other task characteristics for knowledge application need to be taken 
into account and the task difficulty has to be varied accordingly. Generally, for every 
measurement tool in psychological assessment, the qualities of the instrument have to be 
thoroughly investigated in order to provide a high standard assessment. Applying CDM 
can further enable capturing cognitive processes behind the assessment and to understand 
how these processes determine the difficulty of the assessment tasks. Furthermore, in-
formation about determining task characteristics is valuable for generating new items. 

As a word of caution when interpreting results from CDM, it is essential to note that the 
issue whether results merely reflect task characteristics or allow testimony on underlying 
cognitive processes in students is highly disputed (e.g., Borsboom & Mellenbergh, 
2007). Here is not the venue to resolve this issue, but beyond doubt, the integration of 
psychometric modeling and cognitive psychology enlightens the substantive understand-
ing of CPS and mastery of its components. 

CPS represents a transversal skill, which exponentially gains in importance. A profound 
understanding of this skill, not only in terms of determining its dimensionality (between-
component perspective) but also in terms of discovering the underlying cognitive fea-
tures of the CPS dimensions (within-component perspective), is essential in order to be 
able to generate adequate tasks for the assessment of CPS and to enable a meaningful 
interpretation of assessment results. For instance, the information about involved cogni-
tive processes enables us to explain low results in a CPS assessment as a low ability of a 
person to perform certain cognitive operations required in the administered tasks. CDM 
is a promising new field in psychometric research, which offers statistically sophisticated 
methods facilitating the identification of discrete characteristics that are hiding behind 
assessment tasks. This way CDM puts a new perspective on the research of CPS, opens 
up the question of other task characteristics involved in the problem solving process than 
those handled in this paper, and makes it possible to generate a valid and scalable as-
sessment instrument for CPS. 
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Appendix 

Seven MicroDYN tasks were varied with regard to two task characteristics: the degree of 
connectivity between inputs (i.e. A, B, and C) and outputs (i.e., X, Y, and Z with 2, 3 or 
4 connections) and presence of indirect effects (i.e., 0 for no eigendynamic or 1 for the 
presence of eigendynamics). 

 

Task Linear structural equations Task characteristics 

Degree of 
connectivity 

Indirect 
effects 

Task 1 t 1 t tX 0*A 2* 1*X+ = + +tB  

t 1 t tY 0*A 2* 1*Y+ = + +tB  

2 0 

Task 2 t 1 t tX 2* 2* 0*C 1*X+ = + + +t tA B  

t 1 t t tY 0*A 0*B 2* 1*Y+ = + + +tC  

3 0 

Task 3 t 1 t t tX 2* 0*B 0*C 1*X+ = + + +tA  

t 1 t tY 0*A 2* 2* 1*Y+ = + + +t tB C  

t 1 t t tZ 0*A 0*B 2* 1*Z+ = + + +tC  

4 0 

Task 4 t 1 t tX 2* 2* 0*C 1*X+ = + + +t tA B  

t 1 t t tY 0*A 2* 0*C 1*Y+ = + + +tB  

t 1 t t tZ 0*A 0*B 2* 1*Z+ = + + +tC  

4 0 

Task 5 t 1 t tX 2* 0*B 0*C 1.33*+ = + + +t tA X  

t 1 t t tY 0*A 0*B 2* 1*Y+ = + + +tC  

3 1 

Task 6 t 1 t t t tX 0*A 0*B 0*C 1*X+ = + + +  

t 1 tY 2* 2* 0*C 1.33*+ = + + +t t tA B Y  

t 1 t t tZ 0*A 0*B 2* 1*Z+ = + + +tC  

4 1 

Task 7 t 1 t t tX 2* 0*B 0*C 1*X+ = + + +tA   

t 1 t t tY 2* 0*B 0*C 1*Y+ = + + +tA  

t 1 t tZ 0*A 0*B 2* 1.33*+ = + + +t tC Z  

4 1 

 

 


