

Frauke Voitle, Nele Kampa, Irene Neumann, Julia Schwanewedel & Kerstin Kremer

Theoretical Background

Defining Epistemological Beliefs (EBs)

EBs are the set of individual subjective theories one holds about the nature of knowledge and (the process of) knowing. (Anschütz, 2012; Hofer & Pintrich, 1997)

Structure of EBs according to Conley et al. (2004)

Source

Knowledge is not a privilege of few authorities

Nature of knowing Justification

Experiments as (one) possible means to create knowledge

Certainty

- There's not always an absolute answer;
- Knowledge can be revised

Nature of knowledge Development

Science is constantly evolving

EBs in Science Class

• EBs as precondition for learning science: EBs have multiple influences on students' learning (e.g., use of learning strategies, perceiving and processing information, ...)

(Bromme et al., 2010: Hofer, 2001)

- EBs as achievement goal (Kampa et al., 2016): EBs are part of scientific literacy
- Development of EBs is affected by instruction:
 - EBs are context dependent and develop with experience (Bromme et al., 2010; Muis et al., 2006)
 - Perceived distance, missing relevance of classroom science for professional science or missing experience may lead to separate sets of views or beliefs concerning classroom and professional science.

(Clough, 2006; Hogan, 2000; Sandoval, 2005)

Research Design and Procedure

Research Questions

- · Do students' EBs related to classroom science differ from their EBs related to professional science?
- · Is the adapted questionnaire for assessing students' EBs related to classroom science verbally appropriate for 8th grade students?

Sample

N=102 (Υ = 60. σ = 42) 8th graders' from 3 academic-track schools

Instrument

Adapted questionnaire with 26 items (5-point likert-scale): 10 likert-scale, 3 open-ended items targeting students' understanding and general feedback.

Research Findings and Implications

Students' EBs concerning Classroom Science

Table 1: Research findings for 8th graders' school-specific EBs.

Dimension	Mean	SD
Source (5 items, α=0.84)	3.05	(1.22)
Justification (9 items, α =0.42)	4.11	(.91)
Certainty (6 items, α =0.72)	3.38	(1.13)
Development (6 items, α =0.54)	3.74	(.98)

Reliability for justification, if f25 is omitted: α =0.59

Two peaks in Fig 1 for items f15 and f19 and a relatively high interitem-correlation (.65) indicate two differing opinions concerning trust in authorities. This should be assessed in further studies.

Note: In the school-specific context interpreting EBs as naive or sophisticated may differ from the interpretations in the context of professional science.

Comparing Students' EBs concerning Classroom and **Professional Science**

Students' EBs differ significantly regarding the context of classroom and professional science, respectively.

Table 2: Research findings for 9th graders' EBs related to professional science by Urhahne & Hopf (2004), N=167.

Dimension	Mean	SD
Source (5 items, α=0.67)	3.94	(.58)
Justification (9 items, a=0.68)	3.96	(.50)
Certainty (6 items, α =0.41)	3.69	(.50)
Development (6 items, α=0.66)	3.22	(.67)

Adapting the Questionnaire

The developed questionnaire is based on the one by Conley et al. (2004). Analogous phrases referring to the school context were iteratively developed and then systematically applied.

Exemplary Items

Certainty (related to classroom science) You always agree about what is true in science class.(-)

Certainty (related to professional science, Conley et al., 2004) Scientists always agree about what is true in science.(-)

Fig. 2: Ranges of students' responses (recoded for source and certainty) for the four dimensions source, justification, certainty and development of students' school-specific EBs.

Students' Understanding of the Questionnaire

- 6 items in the dimensions justification (4) and development (2) were perceived difficult by at least 5 % of the students.
- Understanding the items was perceived to be rather easy (f28: 81.4%, f35: 84.3%)
- Stating an opinion was perceived rather difficult by a significant share of students (f27: 18.6%, f29: 13.7%, f32: 28.4%). This seems to be connected with referring to science in an integrated sense.
- Low reliabilities, inter-item-correlations and students' feedback demand for revision of the items referring to development and justification.

Prospect to further Research

Summer/Autumn 2018:

Quantitative comparison of students' EBs concerning classroom and professional science

Autumn/Winter 2018:

Qualitative assessment of causes for students' differing EBs

Contact: Voitle@ipn.uni-kiel.de

Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29(2), 186–204. Urhafne, D., & Hopf, M. (2004). Epistemologische Überzeugungen in den Naturwissenschaften und ihre Zusammenhänge mit Motivation, Selbstkonzept und Lernsträtegien. Zeitschrift für Didaktik der Naturwissenschaften, 10(1), 71–87.

Frauke Voitle, Nele Kampa, Irene Neumann, Julia Schwanewedel & Kerstin Kremer

Literature

- Anschütz, A. (2012). Epistemische Überzeugungen von Schülerinnen und Schülern: Entwicklung eines Erfassungsinstrumentes für die Jahrgangsstufen 3 bis 6. Berlin: Logos-Verl.
- Bromme, R., Pieschl, S., & Stahl, E. (2010). Epistemological beliefs are standards for adaptive learning: A functional theory about epistemological beliefs and metacognition. *Metacognition and Learning*, 5(1), 7–26.
- Clough, M. P. (2006). Learners' Responses to the Demands of Conceptual Change: Considerations for Effective Nature of Science Instruction. Science & Education, 15(5), 463–494.
- Hofer, B. K. (2001). Personal Epistemology Research: Implications for Learning and Teaching. Educational Psychology Review, 13(4), 353–383.
- Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. *Review of educational research*, 67(1), 88–140.
- Hogan, K. (2000). Exploring a process view of students' knowledge about the nature of science. Science Education, 84(1), 51-70.
- Kampa, N., Neumann, I., Heitmann, P., & Kremer, K. (2016). Epistemological beliefs in science—a person-centered approach to investigate high school students' profiles. Contemporary Educational Psychology, 46, 81–93.
- Meyling, H. (1990). Wissenschaftstheorie im Physikunterricht der gymnasialen Oberstufe: Das wissenschaftstheoretische Schülervorverständnis und der Versuch seiner Veränderung durch explizit wissenschaftstheoretischen Unterricht. Dissertation. Bremen.
- Muis, K. R., Bendixen, L. D., & Haerle, F. C. (2006). Domain-Generality and Domain-Specificity in Personal Epistemology Research: Philosophical and Empirical Reflections in the Development of a Theoretical Framework. Educational Psychology Review, 18(1), 3–54.
- Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634-656.
- Urhahne, D., & Hopf, M. (2004). Epistemologische Überzeugungen in den Naturwissenschaften und ihre Zusammenhänge mit Motivation, Selbstkonzept und Lernstrategien. Zeitschrift für Didaktik der Naturwissenschaften, 10(1), 71–87.

Contact information

Thank you for your attention !

Feel free to contact me: voitle@ipn.uni-kiel.de

 $https://www.ipn.uni-kiel.de/en/the-ipn/departments/biology-education/staff/voitle-frauke?set_language=en/staff/voitle-frauke?set_languag$

